Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	U_{eq}
	x	0	0	$0.0165(4)$
Rb	0	0	$0.15141(4)$	$0.0023(4)$
Ti	0	$0.71964(17)$	0	$1 / 4$
P	$0.2126(4)$	$0.1469(4)$	$0.30069(10)$	$0.0022(5)$
$\mathrm{O}(1)$	$0.4659(4)$	$0.3029(4)$	$0.23157(10)$	$0.0087(10)$
$\mathrm{O}(2)$				

Table 2. Selected geometric parameters ($\AA,{ }^{\circ}$)

TiO_{6} octahedron			
$\mathrm{Ti}-\mathrm{O}(1) \times 3$	1.927 (3)	$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(1)$	89.2 (1)
$\mathrm{Ti}-\mathrm{O}(2) \times 3$	1.944 (3)	$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(2)$	97.2 (1)
		$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(2)$	86.5 (1)
		$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(2)$	172.3 (1)
		$\mathrm{O}(2)-\mathrm{Ti}-\mathrm{O}(2)$	87.6 (1)
PO_{4} tetrahedron			
$\mathrm{P}-\mathrm{O}(2) \times 2$	1.517 (3)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(2)$	110.7 (2)
$\mathrm{P}-\mathrm{O}(1) \times 2$	1.530 (3)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(1)$	109.0 (2)
		$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(1)$	107.1 (2)
		$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(1)$	113.9 (2)
Environment around Rb			
$\mathrm{Rb}-\mathrm{O}(2) \times 6$	2.854 (2)	$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(2)$	56.3 (1)
$\mathrm{Rb}-\mathrm{O}(1)$	3.366 (2)	$\mathrm{O}(1)-\mathrm{Rb}-\mathrm{O}(1)$	65.0 (1)
		$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(1)$	45.5 (1)
		$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(1)$	79.0 (1)
		$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(1)$	86.4 (1)

Table 3. Comparison of cell parameters (\AA), bond lengths (\AA) and bond strengths (v.u.) for isostructural $M \mathrm{Ti}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ compounds

a	$\mathrm{NaTi} \mathrm{V}_{\left(\mathrm{PO}_{4}\right)_{3}{ }^{*}}$		$\mathrm{KTi}_{2}\left(\mathrm{PO}_{4}\right)_{3} \dagger$		$\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$	
	Length	Strength	Length	Strength	Length	Strength
	8.502	-	8.367	-	8.290	-
c	21.833	-	23.074	-	23.530	-
M-O(2)	2.290	0.27	2.745	0.19	2.857	0.20
$M-\mathrm{O}(1)$	3.788	0	3.418	0.03	3.366	0.05
$\mathrm{Ti}-\mathrm{O}(1)$	1.896	0.80	1.918	0.76	1.927	0.74
$\mathrm{Ti}-\mathrm{O}(2)$	2.107	0.45	1.942	0.71	1.944	0.71
$\mathrm{P}-\mathrm{O}(2)$	1.530	1.27	1.524	1.29	1.517	1.31
$\mathrm{P}-\mathrm{O}(1)$	1.533	1.25	1.530	1.27	1.530	1.27

*Ivanov, Belokoneva, Egorov-Tismenko, Simonov \& Belov (1980).
\dagger Lunezheva, Maksimov, Mel'nikov \& Muradyan (1989).
Data collection, cell refinement and data reduction were carried out using Stoe software. Precise cell refinement was performed by double-step-scan technique. The atomic coordinates for $\mathrm{KTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Lunezheva, Maksimov, Mel'nikov \& Muradyan, 1989) were used as an initial model. The structure was refined using SHELX76 (Sheldrick, 1976).

I thank Dr Pam Thomas, Warwick University, England, for providing me with the facilities for growing the crystals. This work was supported by a grant from the Optoelectronics Research Centre at Southampton University/University College London.

[^0]
References

Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Duhlev, R. (1994). Acta Cryst. C50, 1523-1525.
Ivanov, Yu. A., Belokoneva, E. L., Egorov-Tismenko, Yu. K., Simonov, M. A. \& Belov, N. B. (1980). Dokl. Akad. Nauk SSSR, 252, 1122-1125; Sov. Phys. Dokl. 252, 420-422.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Lunezheva, E. S., Maksimov, B. A., Mel'nikov, O. K. \& Muradyan, L. A. (1989). Kristallografiya, 34, 611-614; Sov. Phys. Crystallogr. 34, 363-365.
Masse, R. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 500-503. Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Acta Cryst. (1994). C50, 1527-1529

Ammonium Heptachlorooxodiantimonate(III), $\left(\mathbf{N H}_{4}\right)_{3}\left[\mathbf{S b}_{2} \mathbf{C l}_{7} \mathbf{O}\right]$

Robin D. Rogers* and Mary L. Jezl
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 14 September 1993; accepted 14 February 1994)

Abstract

Each Sb atom of the title compound is formally ψ-tetrahedral $\left(A B_{3} E\right)$ with covalent bonds to two terminal Cl atoms and one bridging O atom. Three directed secondary interactions to three additional symmetrically bridging Cl atoms give each Sb atom a roughly octahedral coordination geometry. The bridging arising from the secondary interactions produces chains of $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{4} \mathrm{O}\right]_{2}$ units which propagate along the unit-cell c axis. The $\mathrm{O}, \mathrm{Cl}(3)$ and $\mathrm{Cl}(4)$ atoms lie on crystallographic mirror planes, while $\mathrm{Cl}(5)$ resides on a twofold axis. The ammonium cations are hydrogen bonded to the Cl and O atoms.

Comment

The title compound was unintentionally isolated during the reaction of SbCl_{3} with tetraethylene glycol in a 3:1 acetonitrile-methanol solution containing stoichiometric amounts of $\mathrm{NH}_{4} \mathrm{OH}$. The covalent $\mathrm{Sb}-\mathrm{Cl}(1,2)$ and $\mathrm{Sb}-\mathrm{O}$ distances are normal (Begley, Hall, Nunn \& Sowerby, 1986; Hall \& Sowerby, 1979; Rheingold, Landers, Dahlstrom \& Zubieta, 1979). There are two types of bridging interaction produced by the secondary $\mathrm{Sb}-\mathrm{Cl}$ contacts (Sawyer \& Gillespie, 1986). The Cl(3) and the O atoms bridge two Sb atoms with an $\mathrm{Sb} \cdots \mathrm{Sb}$ separation of 3.582 (1) \AA. $\mathrm{The} \mathrm{Cl}(5)$ and $\mathrm{Cl}(4)$ atoms form
nearly linear bridges and the $\mathrm{Sb} \cdots \mathrm{Sb}$ separations are correspondingly longer $[5.757(2) \AA$ at the $\mathrm{Cl}(5)$ bridge and 6.411 (1) \AA at the $\mathrm{Cl}(4)$ bridge]. Each bridging interaction in the polymeric chain is symmetric.

Although the H atoms could not be located, the $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{Cl}$ contact geometries indicate extensive hydrogen bonding, most likely with both single and bifurcated interactions. The possible hydrogenbonded $\mathrm{N} \cdots \mathrm{O}$ contacts range from 2.94 (1) to 3.19 (2) \AA and the $\mathrm{N} \cdots \mathrm{Cl}$ distances range from 3.17 (2) to 3.572 (9) \AA.

Fig. 1. ORTEP (Johnson, 1976) illustration of a portion of the polymeric chains in $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{7} \mathrm{O}\right]$. Ellipsoids are drawn at the 50% probability level.

Fig. 2. SYBYL (Tripos Associates, 1993) representation of the unit-cell packing as viewed down the c axis. The polymeric chains are viewed end on.

Experimental

Crystal data

$\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{7} \mathrm{O}\right]$
$M_{r}=561.79$
Orthorhombic
Pnnm
$a=11.342$ (3) \AA
$b=13.165$ (3) \AA
$c=9.993(2) \AA$
$V=1492 \AA^{3}$
$Z=4$
$D_{x}=2.50 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: empirical
$T_{\text {min }}=0.83, T_{\text {max }}=1.00$
1538 measured reflections
1538 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 refiections
$\theta=20-25^{\circ}$
$\mu=4.88 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Parallelepiped
$0.25 \times 0.15 \times 0.05 \mathrm{~mm}$ Colorless

816 observed reflections
$\left[F_{o} \geq 5 \sigma\left(F_{o}\right)\right]$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 15$
$l=0 \rightarrow 11$
3 standard reflections frequency: 60 min
intensity variation: $\pm 2.5 \%$

Refinement

Refinement on F
$R=0.041$
$w R=0.050$
$S=1.18$
816 reflections
71 parameters
H -atom parameters not included
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0004 F_{o}^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=0.8 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.2 \mathrm{e}^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography
(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
x	y	z	$B_{\text {eq }}$
0.78567 (6)	0.61713 (5)	0.67921 (7)	1.31
0.5895 (3)	0.7007 (3)	0.7008 (3)	2.35
0.6931 (3)	0.4563 (2)	0.7550 (3)	2.05
0.8764 (4)	0.7694 (3)	1/2	2.00
0.8190 (5)	0.6393 (4)	1	2.48
1	1/2	0.6929 (5)	2.44
0.749 (1)	0.5598 (9)	1/2	1.73
1/2	1/2	1/2	2.87
1/2	1/2	1	3.69
0.611 (1)	0.899 (1)	1/2	2.55
0.847 (2)	0.332 (1)	1/2	2.44

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sb}-\mathrm{Cl}(1)$	2.492 (3)	$\mathrm{Sb}-\mathrm{Cl}(2)$	2.482 (3)
$\mathrm{Sb}-\mathrm{Cl}(3)$	2.879 (3)	$\mathrm{Sb}-\mathrm{Cl}(4)$	3.241 (1)
$\mathrm{Sb}-\mathrm{Cl}(5)$	2.8820 (8)	$\mathrm{Sb}-\mathrm{O}$	1.987 (5)
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(2)$	88.4 (1)	$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(3)$	93.8 (1)
$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(3)$	159.3 (1)	$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(4)$	88.8 (1)
$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(4)$	79.9 (1)	$\mathrm{Cl}(3)-\mathrm{Sb}-\mathrm{Cl}(4)$	120.7 (1)
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(5)$	170.2 (1)	$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(5)$	83.45 (8)
$\mathrm{Cl}(3)-\mathrm{Sb}-\mathrm{Cl}(5)$	95.8 (1)	$\mathrm{Cl}(4)-\mathrm{Sb}-\mathrm{Cl}(5)$	84.4 (1)
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{O}$	93.5 (3)	$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{O}$	82.1 (3)
$\mathrm{Cl}(3)-\mathrm{Sb}-\mathrm{O}$	77.2 (3)	$\mathrm{Cl}(4)-\mathrm{Sb}-\mathrm{O}$	161.8 (3)
$\mathrm{Cl}(5)-\mathrm{Sb}-\mathrm{O}$	90.8 (3)	$\mathrm{Sb}-\mathrm{Cl}(3)-\mathrm{Sb}^{\mathrm{ij}}$	76.9 (1)
$\mathrm{Sb}-\mathrm{Cl}(4)-\mathrm{Sb}{ }^{\mathbf{i}}$	163.1 (2)	$\mathrm{Sb}-\mathrm{Cl}(5)-\mathrm{Sb}{ }^{\text {iii }}$	174.6 (2)
$\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}^{\text {iid }}$	128.7 (6)		

Computer programs utilized include SHELXS886 (Sheldrick, 1990) for structure solution, SHELX76 (Sheldrick, 1976) for structure refinement, ORTEP (Johnson, 1976) for the preparation of Fig. 1 and SYBYL (Tripos Associates, 1993) for the preparation of Fig. 2.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: BR1061). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Begley, M. J., Hall, M., Nunn, M. \& Sowerby, D. B. (1986). J. Chem. Soc. Dalton Trans. pp. 1735-1739.
Hall, M. \& Sowerby, D. B. (1979). J. Chem. Soc. Chem. Commun. pp. 1134-1135.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rheingold, A. L., Landers, A. G., Dahlstrom, P. \& Zubieta, J. (1979). J. Chem. Soc. Chem. Commun. pp. 143-144.

Sawyer, J. F. \& Gillespie, R. J. (1986). Prog. Inorg. Chem. 34, 65-113.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Tripos Associates (1993). SYBYL. St Louis, Missouri, USA.

Acta Cryst. (1994). C50, 1529-1531

Hexagonal $\mathrm{Yb}_{6} \mathrm{Cr}_{4+\mathrm{x}} \mathrm{Al}_{43-\mathrm{x}}(\boldsymbol{x}=\mathbf{1 . 7 6})$ with a New Structure Type

T. I. Yanson, M. B. Manyako, O. I. Bodak and O. S. Zarechnyuk

Department of Inorganic Chemistry, L'viv University, 6 Lomonosova Street, 290005 L'viv 5, Ukraine

R. E. GladyshevskiI, R. Cerny \dagger and K. Yvon
Laboratoire de Cristallographie, Université de Genève, 24 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland

(Received 5 October 1993; accepted 7 April 1994)

Abstract

The title compound contains one Yb , two Cr and seven Al sites, one of which is about half occupied by Cr . The coordination polyhedron of Yb has the composition $\left[\mathrm{Cr}(\mathrm{Al}, \mathrm{Cr})_{2} \mathrm{Al}_{13} \mathrm{Yb}\right]$, while those around Cr are $\left[\mathrm{Al}_{10} \mathrm{Yb}_{2}\right]$ and $\left[\mathrm{Al}_{12}\right]$, and that around the mixed site is $\left[\mathrm{Al}_{9} \mathrm{Yb}_{3}\right]$.

^[\dagger On leave from: Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic.]

Comment

Aluminium-rich rare-earth (R) transition-metal (T) compounds of approximate composition $R T \mathrm{Al}_{8}$ are known for $R=\mathrm{Y}, \mathrm{Dy}, \mathrm{Sm}, \mathrm{Tb}$ and $T=\mathrm{V}, \mathrm{Cr}$ (Zarechnyuk, Rykhal' \& German, 1971; Rykhal', Zarechnyuk \& Mats'kiv, 1979; Zarechnyuk, Yanson, Ostrovskaya \& Shevchuk, 1988). Investigation of the system Yb-Cr-Al at 773 K revealed the existence of a similar compound.

The structure of $\mathrm{Yb}_{6} \mathrm{Cr}_{4+x} \mathrm{Al}_{43-x}$ is of a new type. It contains one Yb , two Cr and seven Al sites, one of which is occupied partially by Cr (Fig. 1). The coordination polyhedron of Yb has 17 vertices and composition $\left[\mathrm{Cr}(\mathrm{Al}, \mathrm{Cr})_{2} \mathrm{Al}_{13} \mathrm{Yb}\right]$. The polyhedra of the two ordered chromium sites $\mathrm{Cr}(1)$ and $\mathrm{Cr}(2)$, and the disordered metal site $\mathrm{Al}(6)\left(\equiv \mathrm{Al}_{0.56} \mathrm{Cr}_{0.44}\right)$ each have 12 vertices; their compositions are $\left[\mathrm{Al}_{10} \mathrm{Yb}_{2}\right]$, $\left[\mathrm{Al}_{12}\right]$ and $\left[\mathrm{Al}_{9} \mathrm{Yb}_{3}\right]$, respectively. The polyhedra around $\mathrm{Cr}(1)$ and $\mathrm{Al}(6)$ each have a deformed icosahedral shape, while that around $\mathrm{Cr}(2)$ has a regular icosahedral shape, as in many other Al-rich transition-metal compounds (Kripyakevich, 1977). The polyhedra around the other six Al sites all each have 12 vertices and are deformed icosahedra or bicapped pentagonal prisms $[\mathrm{Al}(7)]$. The polyhedra around the $\mathrm{Cr}(1)$ sites are linked parallel to the hexagonal plane in groups of three via common Al atoms and these units are linked perpendicular to the hexagonal plane to form columns along [001] at $x=0, y=0$ via $\mathrm{Cr}(2)$ icosahedra (Fig. 2). Adjacent columns are connected via interpenetrated $\mathrm{Al}(6)$ and Yb polyhedra. All other Al polyhedra interpenetrate with $\mathrm{Cr}(1), \mathrm{Cr}(2)$, $\mathrm{Al}(6)$ or Yb polyhedra. The architecture of the columns of Cr polyhedra (without the Yb atoms) resembles that of hexagonal $\mathrm{V}_{4} \mathrm{Al}_{23}$ (Smith \& Ray, 1957). This structure also contains two transition-metal sites. One of these is icosahedrally coordinated with Al atoms [as is

Fig. 1. Structural projection of hexagonal $\mathrm{Yb}_{6} \mathrm{Cr}_{4+x} \mathrm{Al}_{43-x}$ along [010] showing the coordination polyhedra.

[^0]: Lists of structure factors and anisotropic displacement parameters have been deposited with the $I U C r$ (Reference: DU1070). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

